NR01 is a market leading 4-component net radiometer, mostly used in scientific-grade energy balance and surface flux studies. It offers 4 separate measurements of global and reflected solar and downwelling and upwelling longwave radiation, using 2 sensors facing up and 2 facing down. NR01 owes its popularity to its excellent price / performance ratio and major improvements relative to comparable instruments. Advantages include its modular design with 2 pairs of identical sensors, low weight, ease of leveling, and low solar offsets in the longwave measurement. The unique capability to heat the pyrgeometers reduces measurement errors caused by dew deposition.

  • Lowest price level at top level performance
  • Heated pyrgeometers, best night-time data availability
  • High-accuracy shortwave calibration
  • Low weight, low mounting costs
  • Modular design, 2 pairs of identical sensors
  • Practical leveling, servicing and recalibration


NR01 net radiometers 2webv1201NR01 Measures the 4 Separate Components of the Surface Radiation Balance

NR01 measures the 4 separate components of the surface radiation balance: downward and upward solar and longwave radiation. The solar radiation sensors are called pyranometers and the longwave sensors are called pyrgeometers. From these 4 separate components the net radiation is derived. For calculation of sky- and surface temperatures, it is necessary to compensate for irradiated heat by the pyrgeometers themselves (Stefan-Boltzmann law). A Pt100 temperature sensor is included in NR01’s body for that purpose. Sunshine duration may be estimated according to the WMO approved pyranometric method.

NR01 hukseflux netradiometer 1webv1201NR01 Operation
Using NR01 net radiometer is easy. It can be connected directly to commonly used data logging systems. The irradiance levels in W/m2 are calculated by dividing the NR01 outputs, small voltages, by the sensitivities. The longwave irradiance should be corrected using the instrument body temperature. The sensitivities of all sensors are provided with NR01 on its product certificate.

NR01 4webv1201NR01 Benefits
In order to prevent condensation of water on the pyrgeometer windows, NR01 has internal heating close to the pyrgeometers. This keeps the instrument above dew point. As water blocks longwave radiation, heating will improve the reliability of longwave radiation measurement, in particular at night, when the risk of condensation is highest. Solar offsets in the longwave radiation measurement are very low. NR01 net radiometer has a modular design with 2 pairs of identical sensors: it is possible to take the instrument apart and easily replace individual sensors, and recalibrate them in using the same procedure. Features like these have made NR01 net radiometers popular in energy balance and surface flux studies. In addition, NR01 is practical to mount; it is much lighter than competing models and a 2-axis levelling assembly is included. The levelling assembly fits a 1 inch NPS tube (the tube’s recommended outer diameter equals 33.4 x 10⁻³ m). With the NR01 shim, included in NR01’s delivery, a ¾ inch NPS tube may also be used.

Suggested Use

  • energy balance studies
  • surface flux measurements
  • climatological networks

Areas of Application

  • Building physics / insulation, thermal comfort and energy budget measurement
  • Meteorology / surface energy flux measurement


  • CMF01


Measurands Downward longwave radiation*, global solar radiation, net radiation, reflected solar radiation, upward longwave radiation*
Optional measurands Albedo or solar reflectance, sky temperature*, solar duration, surface temperature*
Included sensors 2 x identical ISO 9060 second class pyranometers 2 x identical pyrgeometer with 150° field of view angle
Spectral range solar 285 to 3000 x 10⁻⁹ m
Calibration traceability solar to WRR
Calibration uncertainty solar < 1.8 %
Spectral range longwave 4.5 to 40 x 10⁻⁶ m
Calibration traceability longwave to WISG
Calibration uncertainty longwave < 7 %
Temperature sensor Pt100
Heater on pyrgeometer 1.5 W at 12 VDC
Rated operating temperature range -40 to 80°C
Required readout 4 x DC voltage,
1 x Pt100
Levelling 2-axis levelling assembly (included)
Mounting ¾ inch NPS tube (not included)
Standard cable length 2 x 5 m (16.4 ft) (see options)
* Required measurand instrument body temperature
Options • Longer cable, in multiples of 5 m, cable lengths above 20 m in multiples of 10 m
• 10 kΩ thermistor instead of Pt100 temperature sensor

Frequently asked questions

How does a pyranometer work?

A pyranometer measures the solar radiation received by a plane surface from a 180 ° field of view angle. This quantity, expressed in W/m², is called “hemispherical” solar radiation. The solar radiation spectrum extends roughly from 285 to 3000 x 10⁻⁹ m. By definition a pyranometer should cover that spectral range with a spectral selectivity that is as “flat” as possible.

In an irradiance measurement by definition the response to “beam” radiation varies with the cosine of the angle of incidence; i.e. it should have full response when the solar radiation hits the sensor perpendicularly (normal to the surface, sun at zenith, 0 ° angle of incidence), zero response when the sun is at the horizon (90 ° angle of incidence, 90 ° zenith angle), and 50 % of full response at 60 ° angle of incidence. A pyranometer should have a so-called “directional response” (older documents mention “cosine response”) that is as close as possible to the ideal cosine characteristic.

In order to attain the proper directional and spectral characteristics, a pyranometer’s main components are:

•    a thermal sensor with black coating. It has a flat spectrum covering the 200 to 50000 x 10⁻⁹ m range, and has a near-perfect directional response. The coating absorbs all solar radiation and, at the moment of absorption, converts it to heat. The heat flows through the sensor to the sensor body. The thermopile sensor generates a voltage output signal that is proportional to the solar irradiance.

•    a glass dome. This dome limits the spectral range from 285 to 3000 x 10⁻⁹ m (cutting off the part above 3000 x 10⁻⁹ m), while preserving the 180 ° field of view angle. Another function of the dome is that it shields the thermopile sensor from the environment (convection, rain).

•    a second (inner) glass dome: For secondary standard and first class pyranometers, two domes are used, and not one single dome. This construction provides an additional “radiation shield”, resulting in a better thermal equilibrium between the sensor and inner dome, compared to using a single dome. The effect of having a second dome is a strong reduction of instrument offsets.

•    a heater: in order to reduce the effect of dew deposition and frost on the outer dome surface, most advanced pyranometers have a built-in heater. The heater is coupled to the sensor body. Heating a pyranometer can generate additional irradiance offset signals, therefore it is recommended to activate the heater only during night-time. Combining a heater with external ventilation makes these heating offsets very low.

Why use a pyranometer?

There are good reasons why pyranometers are the standard for solar radiation measurement in outdoor PV system performance monitoring.

The purpose of outdoor PV testing is to compare the available resource to system output and thus to determine efficiency. The efficiency estimate serves as an indication of overall performance and stability. It also serves as a reference for remote diagnostics and need for servicing.

The irradiance measurement for outdoor PV performance monitoring is usually carried out with pyranometers. Some standards suggest using PV reference cells. Reference cells are (with some minor exceptions) unsuitable for proof in bankability and in proof of PV system efficiency. Pyranometers are and will remain the standard for outdoor solar energy monitoring.

From a fundamental point of view:

  • Pyranometers measure truly available solar irradiance (so the amount of available resource). This is the parameter you need to have for a true efficiency calculation.
  • Reference cells measure only that part of solar radiation that can be used by cells of identical material and identical packaging (flat window), so the yield of a certain PV cell type. This is not a measurement that can be used in an efficiency calculation and in fact leads to several percentage points error in efficiency estimates.

The International Energy Agency (IEA) and ASTM standards for PV monitoring recommend pyranometers for outdoor PV monitoring. PV reference cells do not meet IEC 61724-1 class A requirements for irradiance measurement uncertainty: their directional response makes them systematically overestimate daily radiant exposure in J/m2 (or W·hr/m2 ) by more than 2 %, larger on hourly basis.

How do I choose a pyranometer?

Choosing the right pyranometer for your application is not an easy task. We can offer assistance. But first, you should ask yourself the following questions:

  • are there standards for my application?
  • what level of accuracy do I need?
  • what will be the instrument maintenance level?
  • what are the interfacing possibilities?

When discussing with Hukseflux, our recommendation for the best suited pyranometer will be based on:

  • recommended pyranometer class
  • recommended maintenance level
  • estimate of the measurement accuracy
  • recommended calibration policy
  • recommended interface

Pyranometers can be manufactured to different specifications and with different levels of verification and characterisation during production. The ISO 9060 – 1990 standard, “Solar energy – specification and classification of instruments for measuring hemispherical solar and direct solar radiation”, distinguishes between 3 classes; secondary standard (highest accuracy), first class (second highest accuracy) and second class (third highest accuracy). From second class to first class and from first class to secondary standard, the achievable accuracy improves by a factor 2.

The ISO 9060 – 1990 standard is up for revision. The new 2018 version of the standard will be slightly different from the 1990 version. The new version of ISO 9060 includes three instrument accuracy classes A, B and C, and a special extension of every class “Spectrally Flat”, which is recommended for Plane of Array (POA), albedo, and reflected solar measurements.

Our pyranometer selection guide offers practical guidelines for choosing a pyranometer. The application of pyranometers in PV system performance monitoring according to IEC 61724-1 is highlighted as an example. Sensors specific for diffuse radiation and meteorological networks are also addressed in this selection guide.

What is the difference between a pyrheliometer and a pyranometer?

A pyranometer measures hemispherical solar radiation. When measuring in the horizontal plane this is called Global Horizontal Irradiance (GHI). When measuring in “plane of array”, next to PV panels, this is called plane of array POA irradiance.

A pyrheliometer is used to measure Direct Normal Irradiance (DNI). DNI is defined as the solar radiant flux collected by a plane unit surface normal to the axis pointing towards the centre of the sun, within an optical angular aperture. DNI is composed of the solar irradiance within the extent of the solar disk (half-angle 0.266 ° ± 1.7 %) plus some circumsolar radiation.